

Research Paper

CONSTRUCTION OF NONNEGATIVE MATRIX FOR SPECIAL SPECTRUM

ALIMOHAMMAD NAZARI* AND FAHIMEH SHERAFAT

ABSTRACT. The construction of a nonnegative matrix for a given set of eigenvalues is one of the objectives of this paper. The generalization of the cases discussed in the previous papers as well as finding a recursive solution for the Suleimanova spectrum are other points that are studied in this paper.

MSC(2020): 15A29; 15A18

Keywords: Nonnegative matrix, Spectrum of matrix, Perron eigenvalue, Inverse eigenvalue problem.

1. Introduction

A matrix A is called nonnegative if all its entries are nonnegative. The nonnegative inverse eigenvalue problem (NIEP) asks for necessary and sufficient conditions on a list $\sigma = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ of complex numbers in order that it be the spectrum of a nonnegative matrix. In this case, one says that σ is realizable and a nonnegative matrix A with spectrum σ is said to realize σ and it is referred to as a realizing matrix. There is a right and a left eigenvector associated with the Perron eigenvalue with nonnegative entries. The spectral radius of the nonnegative matrix A is denoted by $\rho(A)$. In addition s_k the k-th power sum of the eigenvalues λ_i and in the list $\sigma = (\lambda_1, \lambda_2, \ldots, \lambda_n)$, λ_1 is the Perron element. Some necessary conditions on the list of complex numbers $\sigma = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ to be the spectrum of a nonnegative matrix are listed below.

(1) The Perron eigenvalue $\max\{|\lambda_i|; \lambda_i \in \sigma\}$ belongs to σ (Perron -Frobenius Theorem).

(2) The list σ is closed under complex conjugation.

(3)
$$s_k = \sum_{i=1}^n \lambda_i^k \ge 0.$$

 $(4)s_k^m \le n^{m-1}s_{km}$ for $k, m = 1, 2, \dots$ (JLL inequality)[3,8].

A number of necessary conditions for realizability are known, as well as a number of sufficient conditions. In many cases, sufficiency is established by the direct construction of a realizing matrix [1-6].

In terms of n, complete solutions to the NIEP are available only for $n \leq 4$. Nazari and Sherafat in [14] tried to introduce a recursive method for solving (NIEP). They solved different cases for state n = 5 and their recursive method can also be used for case n > 5. Although they found a nonnegative matrix for many cases of σ , we can say that complete solution for this problem when $n \geq 5$ is an open problem.

Date: Received: January 10, 2022, Accepted: May 15, 2022.

^{*}Corresponding author.

A. M. NAZARI AND F. SHERAFAT

For the case of non-real spectra σ for n = 4, complete solutions are available through work of Laffey and Meehan [5](see Meehan s 1998 doctoral thesis (National University of Ireland, Dublin [12])) and, independently, that of Torre-Mayo, Abril-Raymundo, Alarcia-Estevez, Marijuan and Pisanero by analyzing coefficients of the characteristic polynomial. EBL digraphs [11]. Oscar Rojo, Ricardo L. Soto found a necessary and sufficient condition for $\sigma = \{\lambda_1, \lambda_2, ..., \lambda_n\}$ to be the spectrum of some circulant nonnegative matrix [13]. In [10] Helena Smigoc started with a realizable list of real numbers and obtained a realizable list that contains elements that are not real.

We start by Lemma 6 of paper from Helena Smigoc in [2] and in section 2 bring Theorem 2.1 from [14] that is similar to Smigoc's Lemma and find some new condition to solve (NIEP) for a given real list of σ . In section 3 we give some special sets of the spectrum and construct a nonnegative matrix corresponding to them.

Lemma 1.1. Suppose B is an $m \times m$ matrix with canonical form J(B) that contains at least one 1×1 Jordan block corresponding to the eigenvalue c:

$$J(B) = \left(\begin{array}{cc} c & 0\\ 0 & I(B) \end{array}\right),$$

let t and s, respectively, be the left and right eigenvector of B associated with the 1×1 Jordan block in the above canonical form. Furthermore, we normalize vectors t and s so that $t^T s = 1$. Let J(A) be a Jordan canonical form for an $n \times n$ matrix

$$A = \left(\begin{array}{cc} A_1 & a \\ b^T & c \end{array}\right)$$

where A_1 is an $(n-1) \times (n-1)$ matrix and a and b are vectors in C^{n-1} . Then the matrix

$$C = \left(\begin{array}{cc} A_1 & at^T \\ sb^T & B \end{array}\right)$$

has Jordan canonical form

$$J(C) = \left(\begin{array}{cc} J(A) & 0\\ 0 & I(B) \end{array}\right).$$

2. Construction of nonnegative matrix with spectrum of two special nonnegative matrices

Theorem 2.1. Let B be an $m \times m$ nonnegative matrix and $M_1 = \{\mu_1, \mu_2, \ldots, \mu_m\}$ be its eigenvalues and μ_1 be Perron eigenvalue of B. Assume A be an $n \times n$ nonnegative matrix in following form

$$A = \left(\begin{array}{cc} A_1 & a \\ b^T & \mu_1 \end{array}\right),$$

where A_1 is an $(n-1) \times (n-1)$ matrix and a and b are arbitrary vectors in C^{n-1} and $M_2 = \{\lambda_1, \lambda_2, \ldots, \lambda_m\}$ is the set of eigenvalues of A. Then there exist the $(m+n-1) \times (m+n-1)$ nonnegative matrix such that $M = \{\mu_2, \ldots, \mu_m, \lambda_1, \lambda_2, \ldots, \lambda_m\}$ is its eigenvalues.

Proof. Proof in [14].

We present a Corollary of the above Theorem, which can be used for problems that do not require the existence of Perron eigebvalue of the matrix B on the main diagonal of the matrix A.

Corollary 2.2. Let the conditions of Theorem 2.1 satisfy but matrix A is in the following form:

$$A = \left(\begin{array}{cc} A_1 & a \\ b^T & \alpha \mu_1 \end{array}\right),$$

then there exists a nonnegative matrix C with the order of $(m + n - 1) \times (m + n - 1)$ as

$$C = \left(\begin{array}{cc} A_1 & as^* \\ sb^T & \alpha B \end{array}\right),$$

such that the elements of $M = \{\lambda_1, \ldots, \lambda_n, \alpha \mu_2, \ldots, \alpha \mu_m\}$ are its eigenvalues.

Proof. Proof is very similar of the Theorem 2.1.

Remark 2.3. We can use the above Theorem for both symmetric and nonsymmetric matrices. We illustrate this with two examples. It is easy to see that the nonnegative matrix $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 250 & 55 & 2 \end{pmatrix} \text{ has eigenvalues } \begin{pmatrix} 10 \\ -4 - 3i \\ -4 + 3i \end{pmatrix} \text{ and the matrix } B = \begin{pmatrix} 0 & 28 \\ 1 & 12 \end{pmatrix} \text{ has eigenvalues } \begin{pmatrix} 14 \\ -2 \end{pmatrix}, \text{ with normalized Perron eigenvector } s = \begin{pmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}. \text{ In order to be able to use the above theorem, we must create a nonnegative matrix whose its Perron eigenvalue is equal 2, because this number is on the main diagonal of matrix A. Now let $a = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $b^T = \begin{pmatrix} 250 & 55 \end{pmatrix}$ then we see that $\frac{1}{7}B$ has eigenvalues $\begin{pmatrix} 2 \\ -2/7 \end{pmatrix}$. Then by above Theorem$$

the nonnegative matrix

$$C = \begin{pmatrix} A_1 & as^* \\ sb^T & \alpha B \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1/4\sqrt{2} & 1/4\sqrt{14} \\ \frac{125\sqrt{2}}{2} & \frac{55\sqrt{2}}{4} & 0 & 2/7\sqrt{7} \\ \frac{125\sqrt{14}}{2} & \frac{55\sqrt{14}}{4} & 2/7\sqrt{7} & \frac{12}{7} \end{pmatrix},$$

is nonnegative matrix with eigenvslues
$$\begin{pmatrix} -2/7 \\ 10 \\ -4-3i \\ -4+3i \end{pmatrix}.$$
 It is easy to see that we can use

the above Theorem for symmetric matrices. The symmetric matrix $A = \begin{pmatrix} 0 & \sqrt{15} \\ \sqrt{15} & 2 \end{pmatrix}$

has eigenvalues
$$\begin{pmatrix} -3 \\ -3 \end{pmatrix}$$
 and we choose the nonnegative 2 × 2 symmetric matrix as $B = \begin{pmatrix} 0 & \sqrt{14} \\ \sqrt{14} & 12 \end{pmatrix}$ with eigenvalues $\begin{pmatrix} 14 \\ -2 \end{pmatrix}$ and then the matrix $\frac{1}{7}B$ has eigenvalues $\begin{pmatrix} 2 \\ -2/7 \end{pmatrix}$

and the Perron eigenvalue of matrix $\frac{1}{7}B$ lies in main diagonal of matrix A and since the Perron eigenvector of matrix $\frac{1}{7}B$ is $\begin{pmatrix} 1/4\sqrt{2} \\ 1/4\sqrt{14} \end{pmatrix}$, then the following nonnegative symmetric matrix

$$\begin{pmatrix} A_1 & as^T \\ sa^T & \alpha B \end{pmatrix} = \begin{pmatrix} 0 & 1/4\sqrt{15}\sqrt{2} & 1/4\sqrt{15}\sqrt{14} \\ 1/4\sqrt{15}\sqrt{2} & 0 & 2/7\sqrt{7} \\ 1/4\sqrt{15}\sqrt{14} & 2/7\sqrt{7} & \frac{12}{7} \end{pmatrix},$$

has eigenvalues $\begin{pmatrix} 5 \\ -3 \\ -2/7 \end{pmatrix}$.

Corollary 2.4. If we change the matrices A and C in corollary 2.2, in the following form:

$$A = \begin{pmatrix} A_1 & a \\ b^T & \alpha + \mu_1 \end{pmatrix}, \ C = \begin{pmatrix} A_1 & as^* \\ sb^T & (\alpha I + B) \end{pmatrix}$$

then the set of $M = \{(\mu_2 + \alpha), \dots, (\mu_m + \alpha), \lambda_1, \dots, \lambda_n\}$ is spectrum of nonnegative matrix C.

Example 2.5. Consider the matrix of Remark (2.3) $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 250 & 55 & 1+1 \end{pmatrix}$ with eigen-

values
$$\begin{pmatrix} 10\\ -4-3i\\ -4+3i \end{pmatrix}$$
, and by above Corolarry $\alpha = \mu_1 = 1$ and $B = \begin{pmatrix} 1/2 & 1/14\sqrt{7}\\ 1/14\sqrt{7} & \frac{13}{14} \end{pmatrix}$
has eigenvalues $\begin{pmatrix} 1\\ 3/7 \end{pmatrix}$ then $\alpha I + B = \begin{pmatrix} 3/2 & 1/14\sqrt{7}\\ 1/14\sqrt{7} & \frac{27}{14} \end{pmatrix}$ has eigenvalues $\begin{pmatrix} 2\\ 10/7 \end{pmatrix}$
and the Perron eigenvalue of matrix $\alpha I + B$ lies in main diagonal of matrix A and then

$$C = \begin{pmatrix} A_1 & as^* \\ sb^T & (\alpha I + B) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1/4\sqrt{2} & 1/4\sqrt{14} \\ \frac{125\sqrt{2}}{2} & \frac{55\sqrt{2}}{4} & 3/2 & 1/14\sqrt{7} \\ \frac{125\sqrt{14}}{2} & \frac{55\sqrt{14}}{4} & 1/14\sqrt{7} & \frac{27}{14} \end{pmatrix}$$

has eigenvalues

$$\left(\begin{array}{c} \frac{10}{7} \\ 10 \\ -4 - 3i \\ -4 + 3i \end{array}\right)$$

Theorem 2.6. Assume B is an $m \times m$ nonnegative diagonal matrix and $M_1 = \{\mu_1, \mu_2, \ldots, \mu_m\}$ is set of its eigenvalues and μ_i and μ_j are two arbitrary elements of M, without loss of generalization of the problem, let i = 1 and j = 2. Take A as an $n \times n$ nonnegative matrix as

follows

$$A = \begin{pmatrix} A_1 & a_1 & a_2 \\ b_1^T & 0 & 0 \\ b_2^T & 0 & 0 \end{pmatrix},$$

where A_1 is an $(n-2) \times (n-2)$ matrix and a_1, a_2, b_1 and b_2 are arbitrary vectors in C^{n-2} . If $M_2 = \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ be the set of eigenvalues of A, then there exists a $(3m+n-4) \times (3m+n-4)$ nonnegative matrix, such that $M = \{\mu_3, \ldots, \mu_m, \mu_3, \ldots, \mu_m, \lambda_1, \ldots, \lambda_n, \underbrace{0, \ldots, 0}_{m \text{ times}}\}$ is its

spectrum.

Proof. Assume vectors s and t are orthonormal eigenvectors associated to eigenvalues μ_1 and μ_2 , respectively. By Schur decomposition theorem, there exists the unitary matrix Y such that $Y^*BY = T_B = B$. Now we partition the matrix Y and Y^* in the following form,

$$Y = \begin{pmatrix} s & t & T \end{pmatrix} \quad and \quad Y^* = \begin{pmatrix} s^* \\ t^* \\ T^* \end{pmatrix}$$

where T is $m \times (m-2)$ matrix and s and t are $m \times 1$ vectors and it is obvious that,

$$YY^* = ss^* + tt^* + TT^* = I_m,$$

$$Y^*Y = \begin{pmatrix} s^*s & s^*t & s^*T \\ t^*s & t^*t & t^*T \\ T^*s & T^*t & T^*T \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & I_{m-2} \end{pmatrix}$$
(2.5)

from the above relation we have,

$$Y^*BY = \begin{pmatrix} \mu_i & 0 & \star \\ 0 & \mu_j & \star \\ 0 & 0 & \hat{T}_B \end{pmatrix} = T_B$$

$$(2.5)$$

 \hat{T}_B is a diagonal matrix with set of $\{\mu_3, \ldots, \mu_m\}$ in its main diagonal. By Schur decomposition Theorem, there exist an unitary matrix X, such that $X^*AX = T_A$, is an upper triangular matrix with the elements M_2 in its main diagonal. The matrices X and X^* are partitioned as below,

$$X = \begin{pmatrix} V \\ K \\ L \end{pmatrix} \quad \text{and} \quad X^* = \begin{pmatrix} V^* & K^* & L^* \end{pmatrix},$$

where the order of matrix V is $(n-2) \times n$ and the order of K and L are both $1 \times n$, since X is a unitary matrix, we have,

$$XX^* = \begin{pmatrix} VV^* & VK^* & VL^* \\ KV^* & KK^* & KL^* \\ LV^* & LK^* & LL^* \end{pmatrix} = \begin{pmatrix} I_{n-2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$X^*X = V^*V + K^*K + LL^* = I_n.$$
(2.7)

By (2.7) and $X^*AX = T_A$, we have,

$$T_A = V^* A_1 V + K^* b^T V + L^* b_2^T V + V^* a_1 K + V^* a_2 L.$$
(2.8)

We consider matrices Z and Z^* and nonnegative matrix C with $(3m + n - 4) \times (3m + n - 4)$ dimension in the following form,

$$Z = \begin{pmatrix} V & 0 & 0 & 0 \\ sK & ts^* & 0 & T \\ tL & st^* & T & 0 \\ 0 & T^* & 0 & T \end{pmatrix}, Z^* = \begin{pmatrix} V^* & K^*s^* & L^*t^* & 0 \\ 0 & st^* & ts^* & T \\ 0 & 0 & T^* & 0 \\ 0 & T^* & 0 & 0 \end{pmatrix},$$
$$C = \begin{pmatrix} A_1 & a_1s^* & a_2t^* & 0 \\ sb_1^T & TT^*B & 0 & 0 \\ tb_2^T & 0 & TT^*B & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Using the relations (2.5) and (2.7), it is easy to show that Z is a unitary matrix. Now by the relations (2.5)-(2.8), we can calculate Z^*CZ ,

 T_C is an upper triangular matrix and the elements of its main diagonal are the elements of set of M. On the other hand by the relation above C and T_C are similar, then C is the matrix, we were to find, and the proof is completes.

Corollary 2.7. Let the conditions of Theorem 2.5 satisfy, then there exist $(3m + n - 4) \times (3m + n - 4)$ nonnegative matrix, that

$$M = \{\alpha\mu_3 + \delta, \dots, \alpha\mu_m + \delta, \beta\mu_3 + \delta, \dots, \beta\mu_m + \delta, \gamma\lambda_1, \dots, \gamma\lambda_n, \underbrace{0, \dots, 0}_{m \text{ times}}\}$$

is its spectrum, where α , β , δ and γ are arbitrary nonnegative real numbers.

Proof. The nonnegative matrix C is as the following form:

$$C = \begin{pmatrix} \gamma A_1 & \gamma a_1 s^* & \gamma a_2 t^* & 0\\ \gamma s b_1^T & \alpha T T^* B + \delta I & 0 & 0\\ \gamma t b_2^T & 0 & \beta T^* T B + \delta I & 0\\ 0 & 0 & 0 & \delta T^* T \end{pmatrix},$$

and it is a solution of the problem. Note that in this Corollary, we construct a unitary matrix for the matrices A, B and C which is the same as Theorem 2.5.

3. Special cases of NIEP of order n

Theorem 3.1. Assume $\sigma = \{\lambda_1, \ldots, \lambda_n\}$, such that the elements of σ are real numbers and σ has only one real positive number λ_1 . Let σ satisfies in the following conditions,

$$\lambda_1 + \lambda_2 + \ldots + \lambda_n \ge 0. \tag{3.1}$$

Then there exist the nonnegative matrix of order n, such that σ is its spectrum.

Proof. Although Suleimanova solved in [7] this problem in 1949 with a companion matrix, we want to find another solution here. We provide proof by induction. Let n = 2, in this case the nonnegative matrix

$$A = \begin{pmatrix} 0 & -\lambda_1 \lambda_2 \\ 1 & \lambda_1 + \lambda_2 \end{pmatrix}$$
(3.2)

is solution of the problem.

Assume n = 3, put $\sigma_1 = \{\lambda_1, \lambda_2\}$, it is clear that σ_1 satisfies in the conditions of theorem, so that σ_1 is spectrum of the matrix (3.2). Let $\sigma_2 = \{\lambda_1 + \lambda_2, \lambda_3\}$, by the relation (3.1), we have,

$$(\lambda_1 + \lambda_2 > 0, \ \lambda_3 \le 0)$$
 or $(\lambda_1 + \lambda_2 = 0, \ \lambda_3 = 0),$ (3.3)

$$\lambda_1 + \lambda_2 \ge |\lambda_3|. \tag{3.4}$$

The relations above show that σ_2 satisfies in the conditions of theorem and by the case of $n = 2, \sigma_2$ is the spectrum of 2×2 nonnegative matrix,

$$B = \begin{pmatrix} 0 & -(\lambda_1 + \lambda_2)\lambda_3 \\ 1 & \lambda_1 + \lambda_2 + \lambda_3 \end{pmatrix}$$

Consequently by (3.4), $\lambda_1 + \lambda_2$ is Perron eigenvalue of nonnegative matrix B. It is easy to show that the right orthonormal eigenvector associated with the Perron eigenvalue of B is

$$s = \left(\begin{array}{c} \frac{-\lambda_3}{\sqrt{1+\lambda_3^2}}\\ \frac{1}{\sqrt{1+\lambda_3^2}} \end{array}\right),$$

because of the Perron eigenvalue of B is placed on the main diagonal of nonnegative matrix A, then matrices A and B satisfy in theorem 2.1, therefore the nonnegative matrix

$$C = \begin{pmatrix} 0 & \frac{\lambda_1 \lambda_2 \lambda_3}{\sqrt{1+\lambda_3^2}} & \frac{-\lambda_1 \lambda_2}{\sqrt{1+\lambda_3^2}} \\ \frac{-\lambda_3}{\sqrt{1+\lambda_3^2}} & 0 & -(\lambda_1 + \lambda_2)\lambda_3 \\ \frac{1}{\sqrt{1+\lambda_3^2}} & 1 & \lambda_1 + \lambda_2 + \lambda_3 \end{pmatrix}$$
(3.5)

has spectrum of $\sigma = \{\lambda_1, \lambda_2, \lambda_3\}.$

Now assume problem holds for n - 1, in order to construct a $n \times n$ nonnegative matrix with the set of eigenvalues $\sigma = \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$, we have to do the following process.

Let $\sigma_1 = \{\lambda_1, \lambda_2, \dots, \lambda_{n-1}\}$ and $\lambda = \lambda_1 + \lambda_2 + \dots, \lambda_{n-2}$ then by relation (3.1) we have

$$\begin{aligned} (\lambda > 0 \;, \lambda_{n-1} \leq 0) \qquad \text{or} \qquad (\lambda = 0, \; \lambda_{n-1} = 0), \text{and then we have} \\ \lambda \geq |\lambda_{n-1}|. \end{aligned}$$

So that, σ_1 satisfies in the conditions of our theorem, by the hypothesis of induction we can construct the $(n-1) \times (n-1)$ nonnegative matrix A with spectrum of σ_1 . By (3.2) and (3.5), the nonnegative matrix A is as the following form_{*a*}

$$A = \begin{pmatrix} \lambda A p \\ b^T & \lambda + \lambda_{n-1} \end{pmatrix},$$

where A_1 is $(n-2) \times (n-2)$ matrix and a and b are the vectors with dimension of $(n-1) \times 1$. Let $\lambda' = \lambda + \lambda_{n-1}$, by (3.1) we have $\lambda' \ge |\lambda_n|$, then by the case of n = 2 there exist the 2×2 nonnegative matrix B, with spectrum $\sigma_2 = \{\lambda', \lambda_n\}$ in the following form

$$B = \left(\begin{array}{cc} 0 & -\lambda'\lambda_n \\ 1 & \lambda' + \lambda_n \end{array}\right).$$

It is clear that λ' is Perron eigenvalue of nonnegative matrix B and orthonormal eigenvector corresponding to λ' is

$$s = \left(\begin{array}{c} \frac{-\lambda_n}{\sqrt{1+\lambda_n^2}}\\ \frac{1}{\sqrt{1+\lambda_n^2}} \end{array}\right).$$

The nonnegative matrices A and B are satisfied on theorem 2.1. then the nonnegative matrix,

$$C = \left(\begin{array}{cc} A_1 & as^* \\ sb^T & B \end{array}\right),$$

with spectrum $\sigma = \{\lambda_1, \lambda_2, \dots, \lambda_n\}$ is a solution of our problem.

Theorem 3.2. Assume $\sigma = \{\lambda_1, \lambda_2, ..., \lambda_n\}$ and $n \geq 3$. If λ_1 be positive real number and λ_2 and λ_3 be pair complex numbers and the other elements of σ be negative or zero real numbers and the conditions (3.1) and (3.2) satisfy and furthermore elements of σ satisfy in the following condition,

$$\alpha_1 = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + |\lambda_2|^2 \le 0.$$

Then there exists an $n \times n$ nonnegative matrix such that σ is its spectrum.

Proof. We prove by induction on n. For n = 3, the following nonnegative matrix,

$$A = \begin{pmatrix} 0 & \lambda_1 \lambda_2 \lambda_3 & 0 \\ 0 & 0 & 1 \\ 0 & -\alpha_1 & \lambda_1 + \lambda_2 + \lambda_3 \end{pmatrix},$$

is a solution of the problem.

Assume the proposition for n-1 satisfies, then so as to construct on $n \times n$ nonnegative matrix with spectrum $\sigma = \{\lambda_1, \ldots, \lambda_n\}$, we can use the process of Theorem 3.1.

Theorem 3.3. Assume $\sigma = \{\lambda_1, \ldots, \lambda_n\}$, such that σ has only one negative number λ_2 and other elements of it, are nonnegative real numbers, furthermore assume the conditions (3.1) and (3.2) satisfy, then there exists an $n \times n$ nonnegative matrix, such that σ is its spectrum.

Proof. If n = 2, the 2×2 nonnegative matrix (3.3) is a solution of this problem. If n > 2, we consider the following matrix,

$$C = \left(\begin{array}{cc} A & 0\\ 0 & B \end{array}\right),$$

where A is the matrix of (3.3) and B is nonnegative diagonal matrix of n-2 order in the following form,

$$B = \operatorname{diag}(\lambda_3, \ldots, \lambda_n)$$

consequently C is solution of the problem.

Example 3.4. $\sigma_1 = \{\lambda_1, \lambda_2, \lambda_3, \lambda_4\}, \ \mu = \sqrt{1 + \lambda_3^2}, \ \beta = \sqrt{1 + \lambda_4^2}$

$$A_{1} = \begin{pmatrix} 0 & \frac{\lambda_{1}\lambda_{2}\lambda_{3}}{\mu} & \frac{\lambda_{1}\lambda_{2}\lambda_{4}}{\mu\beta} & \frac{-\lambda_{1}\lambda_{2}}{\mu\beta} \\ \frac{-\lambda_{3}}{\mu} & 0 & \frac{(\lambda_{1}+\lambda_{2})\lambda_{3}\lambda_{4}}{\beta} & \frac{-(\lambda_{1}+\lambda_{2})\lambda_{3}}{\beta} \\ \frac{-\lambda_{4}}{\mu\beta} & \frac{-\lambda_{4}}{\beta} & 0 & -(\lambda_{1}+\lambda_{2}+\lambda_{3})\lambda_{4} \\ \frac{1}{\mu\beta} & \frac{1}{\beta} & 1 & \lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4} \end{pmatrix}$$

$$\sigma_{2} = \{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\}, \gamma = \sqrt{1 + \lambda_{5}^{2}} \\ A_{2} = \begin{pmatrix} 0 & \frac{\lambda_{1}\lambda_{2}\lambda_{3}}{\mu} & \frac{\lambda_{1}\lambda_{2}\lambda_{4}}{\mu\beta} & \frac{\lambda_{1}\lambda_{2}\lambda_{5}}{\mu\beta\gamma} & \frac{-\lambda_{1}\lambda_{2}}{\mu\beta\gamma} \\ \frac{-\lambda_{3}}{\mu} & 0 & \frac{(\lambda_{1}+\lambda_{2})\lambda_{3}\lambda_{4}}{\beta\gamma} & \frac{(\lambda_{1}+\lambda_{2})\lambda_{3}\lambda_{5}}{\beta\gamma} & \frac{-(\lambda_{1}+\lambda_{2})\lambda_{3}}{\beta\gamma} \\ \frac{-\lambda_{4}}{\mu\beta\gamma} & \frac{-\lambda_{4}}{\beta\gamma} & 0 & \frac{(\lambda_{1}+\lambda_{2}+\lambda_{3})\lambda_{4}\lambda_{5}}{\gamma} \\ \frac{-\lambda_{5}}{\mu\beta\gamma} & \frac{-\lambda_{5}}{\beta\gamma} & 0 & -(\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4})\lambda_{5} \\ \frac{\mu\beta\gamma}{\mu\beta\gamma} & \frac{1}{\beta\gamma} & \frac{1}{\gamma} & 1 & \lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5} \end{pmatrix}, \end{cases}$$

 $\sigma_3 = \{\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6\}, \eta = \sqrt{1 + \lambda_5^2}, \ \lambda = \lambda_1 + \lambda_2 + \lambda_3, \ \lambda' = \lambda + \lambda_4 + \lambda_5 + \lambda_5$

$$A_{3} = \begin{pmatrix} 0 & \frac{\lambda_{1}\lambda_{2}\lambda_{3}}{\mu} & \frac{\lambda_{1}\lambda_{2}\lambda_{4}}{\mu\beta} & \frac{\lambda_{1}\lambda_{2}\lambda_{5}}{\mu\beta\gamma} & \frac{\lambda_{1}\lambda_{2}\lambda_{6}}{\mu\beta\gamma\eta} & \frac{-\lambda_{1}\lambda_{2}}{\mu\beta\gamma\eta} \\ \frac{-\lambda_{3}}{\mu} & 0 & \frac{(\lambda_{1}+\lambda_{2})\lambda_{3}\lambda_{4}}{\beta} & \frac{(\lambda_{1}+\lambda_{2})\lambda_{3}\lambda_{5}}{\beta\gamma} & \frac{(\lambda_{1}+\lambda_{2})\lambda_{3}\lambda_{6}}{\beta\gamma\eta} & \frac{-(\lambda_{1}+\lambda_{2})\lambda_{3}}{\beta\gamma\eta} \\ \frac{-\lambda_{4}}{\mu\beta} & \frac{-\lambda_{4}}{\beta} & 0 & \frac{\lambda\lambda_{4}\lambda_{5}}{\gamma} & \frac{\lambda\lambda_{4}\lambda_{6}}{\gamma} & \frac{-\lambda\lambda_{4}}{\gamma\eta} \\ \frac{-\lambda_{5}}{\mu\beta\gamma} & \frac{-\lambda_{5}}{\beta\gamma} & \frac{-\lambda_{5}}{\gamma} & 0 & \frac{(\lambda+\lambda_{4})\lambda_{5}\lambda_{6}}{\eta} & \frac{-(\lambda+\lambda_{4})\lambda_{5}}{\eta} \\ \frac{-\lambda_{6}}{\mu\beta\gamma\eta} & \frac{-\lambda_{6}}{\beta\gamma\eta} & \frac{-\lambda_{6}}{\eta} & 0 & -\lambda'\lambda_{6} \\ \frac{1}{\mu\beta\gamma\eta} & \frac{1}{\beta\gamma\eta} & \frac{1}{\gamma\eta} & \frac{1}{\eta} & 1 & \lambda' + \lambda_{6} \end{pmatrix}.$$

We select the next example from [15] and try to find a nonsymmetric nonnegative matrix for the given σ .

Example 3.5. Assume given

$$\sigma = \{\lambda_1 = 15, \lambda_2 = -1, \lambda_3 = -2, \lambda_4 = -3, \lambda_5 = -4, \lambda_6 = -5\},\$$

since $\lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6 \leq 0$ and $\sum_{i=1}^6 \lambda_i \geq 0$ then by Theorem (3.1) we construct a solution for σ . At first it is easy to see that the symmetric matrix $C_1 = \begin{pmatrix} 0 & 15 \\ 1 & 14 \end{pmatrix}$ has eigenvalues $\begin{pmatrix} 15 \\ -1 \end{pmatrix}$ and the matrix $B = \begin{pmatrix} 0 & 28 \\ 1 & 12 \end{pmatrix}$ has eigenvalues $\begin{pmatrix} 14 \\ -2 \end{pmatrix}$, with normalized Perron eigenvector $s = \begin{pmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$, then let a = (15) and b = (1) then the 3 × 3 following matrix

$$C_2 = \begin{pmatrix} A_2 & as^* \\ sb^T & B \end{pmatrix} = \begin{pmatrix} 0 & 6\sqrt{5} & 3\sqrt{5} \\ 2/5\sqrt{5} & 0 & 28 \\ 1/5\sqrt{5} & 1 & 12 \end{pmatrix}$$

has eigenvalues

$$\left(\begin{array}{c} 15\\ -2\\ -1 \end{array}\right),$$

and it is necessary to mention that the member (3,3) of the matrix C_1 is equal to 12, and this makes it possible to continue the algorithm. Again the matrix $B = \begin{pmatrix} 0 & 36\\ 1 & 9 \end{pmatrix}$ has eigenvalues $\begin{pmatrix} 12\\ -3 \end{pmatrix}$ with normalazed Perron eigenvaector $s = \begin{pmatrix} 3/10\sqrt{10}\\ 1/10\sqrt{10} \end{pmatrix}$, in this case

$$a = \begin{pmatrix} 3\sqrt{5} \\ 28 \end{pmatrix} \text{ and } b = \begin{pmatrix} 1/5\sqrt{5} \\ 1 \end{pmatrix} \text{ so that}$$
$$C_3 = \begin{pmatrix} A_2 & as^* \\ sb^T & B \end{pmatrix} = \begin{pmatrix} 0 & 6\sqrt{5} & 9/2\sqrt{2} & 3/2\sqrt{2} \\ 2/5\sqrt{5} & 0 & \frac{42}{5}\sqrt{10} & \frac{14}{5}\sqrt{10} \\ 3/10\sqrt{2} & 3/10\sqrt{10} & 0 & 36 \\ 1/10\sqrt{2} & 1/10\sqrt{10} & 1 & 9 \end{pmatrix},$$

has eigenvalues

$$\left(\begin{array}{c} 15\\ -3\\ -2\\ -1 \end{array}\right).$$

With continue this method we have

with eigenvalues

$$\left(\begin{array}{c}
15\\
-4\\
-3\\
-2\\
-1
\end{array}\right)$$

and finally with round the solution with 4 floating point, we have

	(0.0	13.42	6.363	2.057	0.5047	0.1009
$C_{5} =$	0.8944	0.0	26.56	8.591	2.106	0.4212
	0.4242	0.9486				
	0.1372	0.3068	0.9701	0.0	35.30	7.062
	0.03364					25.0
	0.006729	0.01504	0.04755	0.1961	1.0	0.0

References

- T.J. Laffey, Helena Smigoc, On a classic example in the nonnegative inverse eigenvalue problem, ELA, Volume 17, pp. 333–342, July 2008.
- Helena Smigoc, The inverse eigenvalue problem for nonnegative matrices, Linear Algebra and its Applications 393(2004)365–374.
- [3] R. Lowey, D. London, A note on an inverse problem for nonnegative matrices, Linear and Multilinear Algebra 6(1978)83–90.

- [4] R. Reams, An inequility for nonnegative matrices and the inverse eigenvalue problem, Linear and Multilinear Algebra 41(1996)367-375.
- [5] T.J. Laffey, E. Meehan, A characterization of trace zero nonnegative 5 × 5 matrices, Linear Algebra Appl. 302–303(1999)295–302.
- [6] Kh. D. Ikramov, V. N. Chugunov, Inverse matrix eigenvalue problems, Journal of Mathematical Sciences, Vol. 98, No. 1, 2000.
- [7] K. R. Suleimanova, Stochastic matrices with real characteristic values, Dokl. Akad. Nauk. SSSR, 66(1949), 343–345.
- [8] C.R. Johnson, Row stochastic matrices similar to doubly stochastic matrices, Linear and Multilinear Algebra 10 (2) (1981) 113-130.
- [9] S. Friedland, On an inverse problem for nonnegative and eventually nonnegative matrices, Israel J. Math. 29 (1) (1978) 43-60.
- [10] Helena Smigoc, Construction of nonnegative matrices and the inverse eigenvalue problem, Linear and Multilinear Algebra, Vol. 53, No. 2, March 2005, 85-96.
- [11] J. Torre-Mayo, M.R. Abril-Raymundo, E. Alarcia-Estevez, C. Marijuan, M. Pisonero, The nonnegative inverse eigenvalue problem from the coefficients of the characteristic polynomial. EBL digraphs, Linear Algebra and its Applications 426 (2007) 729-773.
- [12] Eleanor Meehan, Some Results On Matrix Spectra. PhD thesis, University College Dublin, 1998.
- [13] Oscar Rojo, Ricardo L. Soto, Existence and construction of nonnegative matrices with complex spectrum, Linear Algebra and its Applications 368 (2003) 53-69.
- [14] A. M. Nazari, F. Sherafat, On the inverse eigenvalue problem for nonnegative matrices of order two to five. Linear Algebra and its Applications 436 (2012) 1771-1790.
- [15] A.M. Nazari, A. Mashayekhi, A. Nezami, On the inverse eigenvalue problem of symmetric nonnegative matrices, *Mathematical Sciences*, volume 14, (2020) 11-19.

(Alimohammad Nazari) DEPARTMENT OF MATHEMATICS, ARAK UNIVERSITY, P. O. BOX 38156-8-8349, ARAK, IRAN.

Email address: a-nazari@araku.ac.ir

(Fahimeh Sherafat) DEPARTMENT OF MATHEMATICS, ARAK UNIVERSITY, P. O. BOX 38156-8-8349, ARAK, IRAN.

Email address: f-sherafat@arashad.araku.ac.ir